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Final report: Reliable function approximation and estimation
Rachel Ward, University of Texas at Austin, rward@math.utexas.edu

Exploiting the latent structure in many real-world signals can dramatically increase algorithmic

robustness to both noise and missing data. The theory of compressed sensing shows that if a signal

of interest is sparse — well-approximated by some small subset of a dictionary of basis elements —

then the signal can be acquired from a reduced number of measurements and reconstructed using

efficient convex programming techniques. However, the standard compressed sensing theory is

valid only for a restrictive set of dictionaries, limiting the scope of applications.

During the tenure of this award, as anticipated, the PI developed a range of reliable and

structure-aware sampling theorems based on the weighted sparsity model for real-world systems

which are governed mostly by low-order interactions. The weighted sparsity model and weighted

sampling allows for more freedom than linear regression but provides sufficient structure to extend

compressed sensing results to a wide class of infinite-dimensional problems. We discuss four key

findings arising from this project, as related to uncertainty quantification, image processing, matrix

completion, and stochastic optimization, respectively.

In paper (P1), we consider the problem of function interpolation, and provide theoretical ba-

sics for weighted sparse approximation. We provided weighted stochastic sampling strategies for

interpolating sparse or compressible expansions in orthogonal polynomial bases from a minimal

number of pointwise function evaluations. Based on a model of weighted sparsity which we in-

troduced, we provide error rates and choices of weights for regularization via weighted L1 min-

imization. We later extended this work to overcomplete dictionaries (P2) and refined the sample

complexity analysis for Gaussian measurements in (P3). Our work has found interest and applica-

tion in uncertainty quantification, namely the polynomial chaos approach, where one approximates

the dependence of simulation model output on model parameters by expansion in an orthogonal

polynomial basis.

In paper (P6) we considered the application of weighted sampling to medical imaging where

one seeks to recover a good approximation of an images with sparsity in terms of its spatial fi-

nite differences and wavelet transform coefficients from a subset of measurements in the Fourier

domain. We formulated the notion of local coherence in the discrete setting and, by bounding

the inner product between Fourier and Haar wavelet basis elements in a certain way, provided

near-optimal reconstruction guarantees with sampling frequencies from a fixed distribution where

a frequency component is sampled with probability proportional to its squared magnitude and re-

covering an image via total variation minimization from such samples.

Matrix completion refers to the problem of recovering a low-rank matrix from a small subset

of its elements, and we also applied the concept of weighted sampling to successfully extend the

state-of-the-art results for matrix completion in papers (P4, P5). Matrix completion was previ-

ously known to be possible when the matrix satisfies a restrictive structural constraint—known as

incoherence—on its row and column spaces. In these cases, the subset of elements is sampled

uniformly at random. We showed that any rank-r matrix can be exactly recovered from as few

as order O(n r) randomly chosen elements, provided this random choice is made according to a

specific biased distribution: the probability of any element being sampled should be proportional

to the sum of the leverage scores of the corresponding row and column.
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Finally, we applied weighted sampling theorems to a seemingly very different application in

large-scale machine learning: stochastic gradient descent. SGD is an iterative procedure for min-

imizing a high-dimensional function whereby at each step, one chooses an index and descends

along the direction of the gradient of a constituent function, repeated until convergence to within a

prescribed tolerance. In huge-scale optimization problems, stochastic gradient descent is an effec-

tive surrogate for full gradient descent, which is too expensive. The default sampling strategy in

stochastic gradient methods is to sample component directions for descent uniformly at random.

In reference (P7), we showed that re-weighting the sampling distribution so that components with

larger variation are sampled with higher probability is necessary in order to improve convergence

over uniform sampling, and obtain a linear dependence on average, as opposed to worst-case,

smoothness among the constituent functions. Our results are based on a connection between SGD

and the randomized Kaczmarz algorithm, which had until this point been studied essentially inde-

pendently from SGD, allowed us to transfer ideas between the separate bodies of literature studying

each of the two methods.

2
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In paper (P1), we consider the problem of function interpolation, and provide theoretical basics for
weighted sparse approximation. We provided weighted stochastic sampling strategies for interpolating
sparse or compressible expansions in orthogonal polynomial bases from a minimal number of pointwise
function evaluations. Based on a model of weighted sparsity which we introduced, we provide error rates
and choices of weights for regularization via weighted L1 minimization. We later extended this work to
overcomplete dictionaries (P2) and refined the sample complexity analysis for Gaussian measurements in
(P3). Our work has found interest and application in uncertainty quantification, namely the polynomial
chaos approach, where one approximates the dependence of simulation model output on model
parameters by expansion in an orthogonal polynomial basis. 

In paper (P6) we considered the application of weighted sampling to medical imaging where one seeks to
recover a good approximation of an images with sparsity in terms of its spatial finite differences and
wavelet transform coefficients from a subset of measurements in the Fourier domain. We formulated the
notion of local coherence in the discrete setting and, by bounding the inner product between Fourier and
Haar wavelet basis elements in a certain way, provided near-optimal reconstruction guarantees with
sampling frequencies from a fixed distribution where a frequency component is sampled with probability
proportional to its squared magnitude and recovering an image via total variation minimization from such
samples. 

Matrix completion refers to the problem of recovering a low-rank matrix from a small subset of its elements,
and we also applied the concept of weighted sampling to successfully extend the state-of-the-art results for
matrix completion in papers (P4, P5). Matrix completion was previously known to be possible when the
matrix satisfies a restrictive structural constraint---known as incoherence---on its row and column spaces. In
these cases, the subset of elements is sampled uniformly at random. We showed that any rank-r matrix can
be exactly recovered from as few as order O(n r) randomly chosen elements, provided this random choice
is made according to a specific biased distribution: the probability of any element being sampled should be
proportional to the sum of the leverage scores of the corresponding row and column. 

Finally, we applied weighted sampling theorems to a seemingly very different application in large-scale
machine learning: stochastic gradient descent(SGD). SGD is an iterative procedure for minimizing a high-
dimensional function whereby at each step, one chooses an index and descends along the direction of the
gradient of a constituent function, repeated until convergence to within a prescribed tolerance. In huge-
scale optimization problems, stochastic gradient descent is an effective surrogate for full gradient descent,
which is too expensive. The default sampling strategy in stochastic gradient methods is to sample
component directions for descent uniformly at random. In reference (P7), we showed that re-weighting the
sampling distribution so that components with larger variation are sampled with higher probability is
necessary in order to improve convergence over uniform sampling, and obtain a linear dependence on
average, as opposed to worst-case, smoothness among the constituent functions. Our results are based on
a connection between SGD and the randomized Kaczmarz algorithm, which had until this point been
studied essentially independently from SGD, allowed us to transfer ideas between the separate bodies of
literature studying each of the two methods.
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